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ABSTRACT
Tangible input has been explored as a means for participants to
self-report experiences while minimising disruption and allowing
for discrete data collection. However, the accuracy of these tangi-
ble devices has not been studied systematically. We compared six
input techniques, including slider, slider with resistance, capacitive
touch slider, squeeze, rotary knob, and joystick, to understand their
accuracy and resolution pro�le. Each of these wireless devices was
designed in a similar form factor and intended to be operated dis-
cretely with one hand. We assessed input accuracy and participant
perceptions across devices through a controlled lab study (N = 20),
highlighting diverging limits to the accuracy of the input technique
and possible explanations for the di�erences in resolution. Our
results indicate that participant accuracy was highest using a slider,
and lowest using a squeeze-based input. We discuss the suitabil-
ity and challenges of discreet tangible self-report techniques, and
highlight open research questions for future work.
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1 INTRODUCTION
In order to study aspects of human experiences that are di�cult to
capture through automated means, e.g. pain levels [31], researchers
and practitioners often rely on the use of self-reports. Self-report
studies, such as diary studies [8] or experience sampling method
(ESM, also known as Ecological Momentary Assessment)-based
studies [35], ask participants to (repeatedly) answer a question in
which they assess their current state. Such studies are common in
Human-Computer Interaction (HCI) as well as the wider academic
and professional landscape [64], as they can provide a more detailed
understanding of an individual’s experience as compared to a one-
o� survey. In contrast to traditional surveys, ESM studies reduce re-
liance on participants’ ability to accurately recall prior experiences
by asking them to re�ect on their current experience rather than
an event or experience that occurred in the past [16, 35, 64]. Use of
the ESM has evolved from analogue pen-and-paper input, to PDAs,
and eventually to smartphones as the predominant form of data
collection [64]. Recent work shows a need among participants to
more discreetly collect self-report data [1, 51]. Furthermore, the pro-
cess of retrieving one’s smartphone, unlocking, and subsequently
providing the self-report input has been reported as a barrier to
participants providing self-reports [29, 44].

The need for more discreet and convenient input methods has
resulted in the development of various bespoke input devices for
self-report studies. These include, inter alia, a squeezable wearable
to record pain levels [1], analogue data collection aimed at Parkin-
son patients [68], and plush toys with tangible body parts [18]. As
these tangible input devices often miss a screen, participants are
unable to con�rm their input. This could, therefore, easily result
in discrepancies between the participant’s intended input and the
value collected by e.g. the researcher or medical expert – poten-
tially resulting in undesired consequences. For example, over- or
under-reporting of pain levels can result in an incorrect adjustment
of medication. Although a number of di�erent form factors have
been explored in the literature, the e�ect of these tangible devices
on the discrepancy between participants’ intended and recorded
self-reports remains unknown.

To inform the design of future tangible self-report devices, we
carried out a lab study (N = 20) in which we compared participant
input accuracy across six tangible devices – assessing distinct input
techniques (e.g., squeeze, rotate, slide). For each device, participants
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were asked to input a set of ten randomised target values while hold-
ing the device out of sight. By calculating the di�erence between
the recorded input values and the randomised target values, we
assessed the devices’ accuracy in recording the intended user input.
Following prior work from the pain assessment literature [31], we
collect input across a high-resolution range (0–100) – in contrast
to earlier work on tangible self-report devices. Furthermore, we
collected participant preferences towards these tangible devices.

In line with the increasing work in the HCI community towards
tangible self-report devices, we contribute a systematic evaluation
across distinct input techniques to enhance our understanding of
the methodological constraints in the use of tangible self-report de-
vices. Our work highlights implications for research using tangible
devices in self-report studies and provides suggestions for future
work in this domain.

2 RELATEDWORK
The form factor of ESM questionnaires has changed drastically
since the initial development of this self-report method. In the ini-
tial ESM studies, participants completed pen-and-paper self-reports
following the arrival of an alert on their pager [35]. Participants
were, therefore, required to carry with them both the questionnaire
papers and a beeper at all times. In the early 1990s, researchers
adopted the use of Personal Digital Assistants (PDAs), allowing for
more advanced questionnaire logic [61] and insights into partici-
pant data entry (e.g., response time) [62]. The eventual introduction
of the smartphone largely replaced the use of pen-and-paper tech-
nology and PDAs [64] due to widespread smartphone adoption
among participants as well as the greatly improved sensing and
presentation capabilities [41, 49, 64]. Wearable and physical de-
vices have since been identi�ed as a future direction for self-report
studies [64].

2.1 Alternative Techniques for Self-Report
Data Entry

Starting from the presentation of traditional surveys on a mobile
format, various researchers have explored alternative input tech-
niques for a variety of reasons. A common motivation for alter-
native input techniques is to reduce participant strain. Truong et
al. present a smartphone input mechanism which allows users
to answer a question while unlocking their phone [63]. Choe et
al. introduced a mobile widget for rapid data input without re-
quiring participants to open an application, resulting in a higher
response rate [10]. Combining the widget interface with traditional
smartphone noti�cations, Visuri et al. present ‘alert dialogues’ –
an interactive popup that allows for immediate data entry which
resulted in high response rates [69]. Hernandez et al. explore three
di�erent form factors for self-reports; smartphone, smartwatch,
and Google Glass [28]. Their results show that while participants’
initial interaction (the time between incoming noti�cation and
opening noti�cation) is shortest with a Google Glass and longest
with a smartphone, no di�erence was found in total response time
between devices. Youn et al. propose ‘WristDial’, in which the ro-
tation of the wrist, as measured by a smartwatch, is used to enter
a number from 1–10 [76]. Participants are provided with either
tactile or speech based feedback, both of which result in high levels

of input accuracy. Recently, Yan et al. showed that participants’
perception of smartwatch interface features for self-report were
a�ected by the context in which the self-report is completed [75].

Although the HCI literature has focused strongly on reducing
participant strain in order to sustain or increase response rates,
other motivations are also considered. Our paper is strongly in-
spired by Adams et al., who present a tangible device for self-
reporting pain levels [1]. Their results highlight a preference among
chronic pain patients for discreet and convenient input. To this end,
Adams et al. develop ‘Keppi’, which allows users to squeeze a physi-
cal device to report their pain level. The authors present three form
factors of Keppi; a necklace, a bracelet, and a keychain – all capa-
ble of capturing four degrees of input (absence of pain, and a low,
medium, and high pain level) [1]. Price et al. present ‘Painpad’, a nu-
meric input pad to self-report pain values during hospital stays [47].
Painpad showed improved patient compliance as compared to a
tablet, and highlights that self-reported pain levels might be more
faithful than scores collected by nurses, which were found to be
systematically lower. While both aforementioned papers focus on
the self-report of pain, their input technique and input range di�er
signi�cantly; pressure-based across three categorical levels (plus
‘no pain’ through no pressure) [1] versus haptic-input through a
numeric input pad across a 0–10 range [47].

Other solutions are characterised by their low level of techno-
logical complexity. Vega et al. assess the use of an analogue booklet
for self-assessment by Parkinson patients [68]. In addition to its
low costs, Vega et al. praise the solution as “accessible, frictionless,
personalised, portable, low-demand, automatically encoded, straight-
forward and �exible” [68]. Tangibles in which the technical elements
have been removed or camou�aged often aim to support a�ective
interactions, a third motivator for the design and exploration of
alternative self-report techniques. Balaam et al. introduce the ‘Sub-
tle Stone’ to a high-school classroom; an a�ective self-report tool
which changes colour when squeezed – allowing for emotional
communication between students and teacher [2]. Guribye et al.
explore a hand-held, tangible stone that allows for data recording
through squeezing [23]. Data is recorded and can subsequently be
visualised on a companion tablet application. Finally, Duong et al.
explore the design of a plush toy augmented with tangible input
options to assist in the assessment of children [18]. The goal of
these devices is “not necessarily to minimize the obtrusiveness but
to design the technology so that the interaction becomes part of an
a�ective experience” [23].

The discussed studies highlight the variety ofmotivations behind,
as well as the possibilities enabled by, bespoke tangible devices.
In this article, we systematically explore the discrepancy between
tangible input as compared to the intended input, motivated by an
increasing uptake of tangible self-report devices and the need to
collect reliable data.

2.1.1 Tangible Data Input Techniques. Expanding the scope of our
related work beyond self-report data collection reveals a plethora of
di�erent input techniques and motivates further work on eyes-free
interaction. Boem & Troiano present an overview of deformable
input techniques [4], identifying �ve categories which form the
basis of deformable interfaces; shape, material, input sensing, I/O
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mapping, and the use of deformable input. Here we highlight di�er-
ent input sensing techniques, which Boem & Troiano categorise as
either ‘embedded sensing’ or ‘external sensing’. Embedded sensing
relies on sensors embedded in the tangible device. An example is the
‘Skweezee System’, which allows for gestural interactions through a
squeeze-based interface [67]. Skweezee objects contain conductive
�lling which changes the resistance of the embedded electrodes,
which is subsequently picked up by a classi�er to identify the user’s
gestures. Recent work byWu et al. presents a pocketed-based textile
sensor which combines inductive, capacitive, and resistive sensing
to provide both gesture and object detection in the pocket [72].
In terms of gestures (e.g., swiping), the researchers were able to
distinguish between low and high pressure.

In addition to the creation of bespoke devices, prior work has
considered how to expand the input options on existing devices.
For example, Harrison & Hudson explored the use of ‘shear’, the
force tangential to a screen’s surface, as an additional touchscreen
input technique [24]. Corsten et al. highlight how the force and
angle of thumb-input can be used on smartphones to reduce the
size of input widgets [15]. Taken the concept of thumb-based input
even further, Xu et al. present a miniature �ngertip keyboard that
allows for eyes-free text entry based on 3D tracking of participant
�ngers [73]. The backside of smartphones, as well as the case and
bezel of smartwatches, have also been explored as an input sur-
face [71, 77], allowing users to interact without obstructing the
screen.

Eyes-free interaction removes visual feedback, increasing re-
liance on users’ kinesthetic sense [5]. Movements in eyes-free in-
teraction are kinesthetically identi�able, meaning that the user
is aware of the position and movements [43]. The human haptic
system is bi-directional, in that it can perceive and act on the envi-
ronment simultaneously [60]. This tight coupling between motor
output (movement and exertion) and sensory input (muscles, joints,
and skin) provides us with an implicit closed-loop control. This
enables eyes-free interaction that does not require additional feed-
back.

2.2 Data Quality and Reliability
The reliability of participant responses in ESM studies has seen
increased attention in the HCI literature; “As researchers largely
rely on human contributions, ensuring a su�cient level of accuracy in
these contributions is essential to produce valid and replicable study
results.” [66]. In an e�ort to ensure, and potentially increase, the reli-
ability of participant responses, a wide range of contributions have
been considered. Xinghui et al. stress the need for reducing par-
ticipant burden by minimising the disruptive nature of self-report
noti�cations and lowering interaction e�orts [74], and introduce
�ve design requirements; ‘minimal disruptiveness’, ‘inclusiveness’,
‘low-focus’, ‘intuitiveness’, and ‘expressivity’. Berrocal et al. sug-
gest to complement self-reports with peers through ‘PeerMA’, in
which a person close to the participant (e.g., spouse) provides ‘peer-
reports’ [3]. PeerMA can help to e.g. reduce the social desirability
bias, in which participants provide socially desirable answers rather
than their honest self-assessment. Gami�cation, the introduction of
game elements in a non-game context, has been shown to increase
the quality of participant contributions [65]. Matejka et al. studied

the e�ect of visual appearance of sliders and visual analogue scales
on participant input [38]. Their results highlight that decorations,
such as for example tick marks at the 25%, 50%, and 75% point of
an analogue scale, introduce bias amongst participant responses.
Based on these results, Matejka et al. recommend against the use of
tick marks along the input axis. Finally, Rabbi et al. present ‘ReVibe’,
a system which asks participants to re�ect on multiple moments
throughout their day retrospectively, supported by automatically-
collected sensor data [48]. The proposed system aims to reduce the
interruption of participants throughout the day while providing a
memory aid to reduce the e�ects of recall-bias.

The current study aims to assess the reliability of tangible self-
report devices in capturing the intended data input from study
participants. In particular, we highlight the discrepancy between
the intended and the recorded input value as a potential detriment
to the reliability of tangible self-report input.

3 METHOD
To study the accuracy of di�erent input techniques for tangible
self-report devices, we �rst designed six distinct devices. Devices
were designed to follow a similar level of �nish, shape, and user
comfort to allow for a direct comparison between devices. The
devices were assessed in a lab-study, in which participants aimed to
accurately input numbers as shown on a screen. Following each set
of ten, participants assessed the usability of the input device and
were able to provide feedback. Here, we discuss the design of the
input devices, the study software, as well as the study procedure.

3.1 Design Considerations
We �rst present our design considerations and introduce the phys-
ical components and input techniques of the self-report devices.
Following earlier insights which highlight that participants feel
a need to report e.g. anxiety or pain levels discreetly [1, 51], our
�rst design consideration was to ensure that the devices can record
participant input without a direct line-of-sight (e.g., keeping the
device in their pocket). To support this, all devices were designed
to be wireless, with an onboard microcontroller capable of sending
data via WiFi (Adafruit Feather HUZZAH ESP8266). Following the
same motivation, our second design requirement was to ensure
that all devices can be operated using one hand to support discreet
input. Our third design consideration was to ensure consistency in
the appearance, �delity of the physical form, and a uniform level
of re�nement of the input devices. This was to ensure that none of
the devices would stand out as being distinctive in their visual ap-
pearance nor that the quality of the construction or other aesthetic
concerns would bias the results [53].

Beyond these initial requirements, the �ve design guidelines
for eyes-free interaction identi�ed by Oakley & Park were helpful
in focusing our investigation [43]. The devices should provide for
self-monitored input, meaning that the kinesthetic sense is involved
in the input, whether that involves being aware of the position of
the body or pressure. The input should re�ect bodily constraints, in
that the motion and stability needed to provide input is compatible
with what is comfortable for the body. Thirdly, minimal interaction
models involve simple mapping between the kinesthetic state and
the state of the system, which are much easier for a user to use as
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opposed to more complex mappings, such as controlling a virtual
cursor, which requires additional cognitive demand. Additional
feedback – when provided – should be immediate, which enables
the person to learn the mapping and input quickly. The learning
process should be as �uid as possible, ensuring that a novice user
can quickly become pro�cient and con�dent in providing input.

Based on these considerations we created a total of six bespoke
input devices for this study. We next discuss their dimensions,
orientation, and input characteristics.

3.1.1 Dimensions. All of the six devices are of similar size: 5.5
centimetres (cm) in width, 9.7 cm in length, and 2.2 cm in height
(respectively 2.2, 3.8, and 0.9 inches), and weigh between 60-86g.
Devices are shown in Figure 2 and Figure 4. We base the size of the
devices on human factors literature and studies of single-handed
interactions. Karlson et al. examined single-handed interactions
with various mobile device sizes, including a ‘large’ device of similar
size to our design and found that size was not a factor in the input
speed when tapping on a touch screen. However, they also noted
that the thumb may not be able to reach all areas of the touch
screen [33]. In the selection of the sensors and design of the layout
of the devices, we ensured that users could easily grasp the device
and that the thumb could reach and provide control over the entire
input range. In a small pilot study, we recruited three participants
with di�erent hand sizes (EU glove size of 7 (small) to 10 (large))
to gain initial feedback on the physical properties of the input
techniques. This helped to con�rm that the overall size and shape
was appropriate for various hand sizes.

In the same pilot study, we asked the participants to provide
feedback on the choice and placement of buttons that could be used
to con�rm the input value. Two types of momentary switches were
explored (push-button and micro switch), as shown in Figure 1. Par-
ticipants appreciated the audible click from both switches, however,
they all preferred the longer, hinged travel of the micro switch. Fur-
thermore, participants commented that they would prefer a larger
button cover in order to be able to reach the button easily regardless
of their grasp. We developed a larger button cover size and stan-
dardised the button placement to the top of the device for ease of
reach using the index �nger. Prior work by Le et al. shows that the
index �nger can reach between 10–12 cm on the back of a smart-
phone [37], indicating that the length of the device appropriately
considers the reach of the index �nger. Furthermore, we ensure that
our devices have two axes of symmetry – enabling the device to be
used in an identical manner for left and right-handed participants.
The aforementioned momentary switch button is therefore also
located at the ‘bottom’ end of the device.

Figure 1: Various prototypes exploring the type, size, and
placement of con�rmation buttons. Right photo shows the
�nal design with large button covers mounted to micro
switches, �xed at the midpoint of the top and bottom edges
(shown here for A������� �����).

3.1.2 Orientation. The literature on the e�ect of slider orientation
on input accuracy presents con�icting results. Colley et al. inves-
tigate slider-based input on touchscreens and �nd that a vertical
orientation introduced more input error (i.e., o�set distortion) [12].
Stephenson &Herman assess the e�ect of a horizontal and a vertical
Visual Analogue Scale (VAS) as used in the Short-Form McGill Pain
Questionnaire (SF-MPQ) [56]. Results of their study indicate that
a vertical VAS correlated better with the ‘present pain intensity’
items on the SF-MPQ as compared to the horizontal VAS. Price et
al. also present their sliders in a vertical orientation [47]. Given
these contradicting results, we follow established practices in pain
reporting and make use of a smartphone-like layout with a vertical
orientation for both the input mechanism and the tangible device.

3.1.3 Input range. In a 1986 landmark study on reporting pain,
Jensen et al. compared six measurements of clinical pain intensity;
a visual analogue scale, a 101-point numerical rating scale, an 11-
point box scale, a 6-point behavioural rating scale, a 4-point verbal
rating scale, and a 5-point verbal rating scale. Their results revealed
that the di�erent measures are “more similar than they are di�erent
in terms of the rates of incorrect responding and in terms of construct
validity.” [31]. This has informed e.g. the decision by Adams et al. to
support four levels of input for their pain self-report prototype [1].
However, Jensen et al. also state that the 101-point numerical rating
scale (NRS-101) has an advantage over the other input options due
to, inter alia, its simplicity in administrating and scoring and its
extensive range, and therefore conclude that “to the degree that a
standard measure of pain intensity is needed to facilitate comparison
of treatment outcome [...] it appears that the NRS-101 would be a
wise choice” [31]. Although our work is not focused solely on pain
assessment, we argue that the consideration to support an extensive
input range also applies to other application domains. It is, therefore,
of interest to assess the ability of participants to accurately input
values on such a high-resolution scale through tangible devices
in order to inform future study designs. As such, we design our
prototypes to allow for data input from 0 to 100.

3.2 Hardware & Software
Following the aforementioned motivations, we provide an overview
of the study’s six input devices in Figure 2. For each device, we
include motivation from related research and the speci�c hardware
details of the implementation.

a) B���� ������. Slider with a knob which can be moved
across the vertical direction. Tangible sliders are widely used
in tangible devices [21, 30, 34], and can be operated while
the user’s attention is focused elsewhere [30]. Features a
clearly distinguishable start and end-point at both extreme
positions, with a linear mapping of input values and total
slider range of 30 mm (1.18 inch). Figure 3 shows the device
and input mechanism. Total device weight is 60g, including
one 3.7V LiPo battery. We built a voltage dividing circuit
to accommodate the micro controller’s analogue to digital
converter (ADC) range of 0-1V. This served to reduce the
3V supply from the board to 1V, which was then connected
to the potentiometer. An identical circuit was used on all
devices.
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Figure 2: Isometric view of the six devices. Light grey areas indicate the moving part of the sensor, which provides the input
value from the participant, orange arrows indicate the direction of movement, con�rmation buttons are dark grey. a) B����
������, b) R��������� ������, c) C��������� ����� ������, d) P������� ����, e) R����� ����, f) A������� �����.

b) R��������� ������. Identical to the B���� ������, with
the addition of a resistance mechanism which provides in-
creasingly stronger tactile feedback as the input value is
increased. Tactile feedback reduces reliance on vision in
selection tasks [45], and has been applied in self-report
studies [36]. The resistance gradually increases due to a
polyurethane elastic band attached to the slider and an inter-
nal hook – hiding the mechanism from the participant. The
force required to move the slider from the baseline position
is approximately 0.69N (70g) to 2.45N (250g) at the maximum
value position. The weight of the device is 65g including a
3.7V LiPo battery.

c) C��������� ����� ������. Capacitive touch potentiome-
ter, which records touch-input across the vertical direction.
Inspired by previous research on eyes-free touch-screen in-
teraction, in which a plastic overlay with an opening served
as a tactile guide for one dimensional �nger movement [13].
In the C��������� ����� ������, the slider lies �at just
beneath the surface of the enclosure, with �nger access pro-
vided by a rectangular opening. The opening is designed
with chamfered edges to provide a smooth and clearly dis-
tinguishable start- and end-point. The size of the opening
was designed so that the centre-to-centre distance of a �n-
gertip at each extreme would result in a total slider travel
similar to the other slider-based devices. The device weighs
71g including two 3.7V LiPo batteries. The capacitive touch
potentiometer [55] is a stand-alone device and requires a
separate supply of 5V, thus a buck-boost converter was used
to boost the voltage from one of the 3.7V batteries. The po-
tentiometer was used in analogue mode, thus functions in
the same way as the other potentiometers used in the study.

d) P������� ����. Pressure-based input based on variable
resistance of conductive foam, in which the input value
increases with an increase in the pressure of the squeeze.
Pressure-based input techniques have been explored both as
a general input technique [24], as well as for the collection of
self-report data [1]. Stewart et al. �nd that double-sided pres-
sure input (i.e., grasping or squeezing) outperforms single-
sided input (i.e., pushing) [57].Wemake use of a double-sided
pressure input, in which the device’s movable part is pressed
with the palm. We separated two wires by a small piece
of carbon-impregnated conductive polyurethane foam [19],
and integrated the composite structure into the handle of
the device. The device weighs 86g including one 3.7V LiPo

battery. To set the sensitivity of the device to accommodate
a comfortable grasp, the device begins to register a change
from the minimum value when approximately 2.11N (215g)
of grasping force is applied. The value increases with the
applied force until reaching the maximum value when ap-
proximately 8.83N (900g) of grasping force is applied. Our
pilot test helped to identify a suitable range for the necessary
grasping force.

e) R����� ����. Physical knob which can be rotated to in-
crease or decrease the input value. Knobs, also called dials,
are one of the most prevalent tangible input techniques and
praised for their ability to support �ne adjustment [34]. The
thumb is placed on the side of the knob, with the input value
decreasing when the knob is rotated towards the palm and
vice versa to increase the value.We a�xed physical end stops
under the knob, constraining the rotation to a range of 90°
to ensure that the full range can be selected without lifting
the thumb. Participant input is mapped linearly across this
range. The device weighs 70g including a 3.7V LiPo battery.

f) A������� �����. A miniaturised joystick that protrudes
vertically and can be pushed with a thumb in two directions.
When pushed away, the value increases and when pulled
towards the palm, the value decreases. Springs return the pro-
trusion to the centre position (i.e., input value 50 out of 100).
Previous work has highlighted the accuracy of the analogue
stick for selecting targets and providing precise movement
control [50]. Analogue sticks are common on video game
controllers [17]. They are also known as a ‘thumb joystick’,
providing linear analogue control over approximately 90°.
We locked one of the axes so that the stick’s movement is
restricted to the axis aligned with the length of the device.
The device weighs 65g including one 3.7V LiPo battery.

Characterising the types of grasp involved in typical activities,
researchers have developed a repository of grasp types [20]. Re-
search on grasp behaviours during daily human activities suggests
approximately 35 grasp types, as well as insights about the unique
capabilities and performance measures [52]. A main distinction can
be drawn between power and precision grasps. All of the devices,
with the exception of the pressure grip device, involve a precision
grasp with the thumb being recruited for �ne control of a sensor.
The P������� ���� involves a power grasp with thumb adduction,
meaning that the thumb moves toward the hand centreline in a
pinching motion. As such, it is the squeeze pressure that dictates
the input rather than the placement of the thumb on the device.
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Figure 3: a) B���� ������, b) minimum value, c) maximum value, and d) electronic components including microcontroller,
battery, potentiometer, voltage divider circuit, and micro switches.

3.2.1 So�ware implementation. To increase the study’s ecological
validity we implemented a fully wireless protocol. All devices send
data via a WiFi connection, constantly updating the device’s cur-
rent state (input reading and con�rmation button). We developed a
bespoke Node.js application which continuously reads all incom-
ing values. The application appends these readings to a .CSV �le,
together with a timestamp, randomly generated participant ID, and
current experimental state (i.e., device and target value).

3.3 Procedure
The study took place following lockdown restrictions due to the
global Covid-19 pandemic, with lockdown being lifted and most
people having returned to their daily jobs. We strictly followed
hygiene protocols, instructing participants to wash their hands
using the provided materials before and after participation, clean-
ing the tangible devices following each participant, and ensuring
su�cient ventilation. Upon accepting to participate in the study
and following the aforementioned hygiene procedure, participants
were explained the goal of the study. Seated at a computer running
the study software, participants were asked to provide their demo-
graphic information as well as their dominant hand. We recruited
a total of 20 participants for this study. Our study sample consisted
of 14 women and 6 men, with an average age of 27.4 (SD = 3.1).
A majority of 18 participants are right-handed, one is left-handed,
and one is ambidextrous (preferred to hold the device in their right
hand). Handedness of our study sample is approximately in line
with population averages [40].

The aforementioned application selected each of the six tangible
devices in random order for assessment. Participants were asked to
pick up the device, visually inspect it, and explore the mapping of
the tangible input with the recorded value. During this exploratory
stage, the application displayed a ‘live’ input value on the screen –
updating continuously in accordance with the participant’s input.
After the participant was ready to proceed, we instructed the par-
ticipant to place the device in their ‘input-hand’ and keep it under
the table, preventing direct line-of-sight to the device (see Figure 4).
This ensured that the data collection represented a real-world usage
scenario in which participants provide discreet input. The appli-
cation randomly selected ten values ranging between 0 and 100,
which the participant aimed to input as accurately at possible. No
direct feedback was given to the participant, i.e. they cannot see the

Figure 4: Left: Study setup with participant seated in front
of a computer, testing the device while watching the value
update on the screen. Right: During the study tasks, the par-
ticipant holds the device under the table to prevent visual
feedback.

actual value selected. The application automatically proceeded to
the next number after the participant con�rmed their input. After
the participant provided input for all ten values, we assessed the
participant’s perceived workload using the raw NASA-TLX ques-
tionnaire (6 items) [25, 26] and o�ered participants the opportunity
to provide free-text feedback regarding the device. Subsequently,
the application randomly selected the next tangible device from the
set of remaining devices. This process was repeated until all devices
had been completed. The study was �nalised with a semi-structured
interview in which the participant’s considerations of using the
tangible in their everyday life were considered.

4 RESULTS
All of our twenty participants managed to complete the tasks across
all devices. Covering six devices, ten tasks per device, and a to-
tal of twenty participants, we collected a total of 1200 completed
tasks. From the results, we identi�ed 187 tasks which had a com-
pletion time of 0 seconds. To ensure the reliability of our analysis,
we removed these 187 tasks from further analysis (15.6% of data
points) and re-validated the devices. Missing data points were dis-
tributed nearly equally between devices, with most tasks missing
from A������� ����� (40 tasks) and least tasks missing from R��
���� ���� (21), with an average of 31.2 missing tasks per device.
We identi�ed the error to be the result of dropped packages between
the self-report device and the WiFi router – our validation did not
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Figure 5: Combined box plot and violin plot highlighting the distribution of the o�set between the participants’ input value
and the requested target value across devices, i.e. absolute error values (lower is better).

reveal any other anomalies in the data collection procedure, and
we are therefore con�dent in the reliability of the remaining 1013
data points. We now summarise the results of our study.

We �rst assess the di�erence in input time between the six de-
vices. Table 1 shows the mean entry times per device, with the
P������� ���� and R����� ���� device resulting in the longest en-
try times. Given the within-subject nature of the study (i.e., repeated
measures) and the non-normality of the data, we use a Friedman
test to assess di�erences. This shows no statistically signi�cant
di�erence in entry times between devices �2(5) = 9.91, p = 0.08.

Entry time O�set

Basic slider 9.47 (SD = 14.8) 10.20 (SD = 9.6)
Resistance slider 9.57 (SD = 18.4) 14.10 (SD = 16.4)
Capacitive touch slider 8.40 (SD = 7.1) 13.90 (SD = 12.7)
Pressure grip 12.10 (SD = 25.4) 36.10 (SD = 25.9)
Rotary knob 10.70 (SD = 14.7) 12.80 (SD = 9.3)
Analogue stick 7.80 (SD = 7.9) 12.20 (SD = 10.8)
Table 1: Overview of mean self-report entry time (in sec-
onds) and o�set between target and input value (lower is
better) per device.

4.1 Input Accuracy
For each self-report entry, we calculated the accuracy o�set score
by taking the absolute di�erence between the participant’s input
value and the target value, i.e. O�set score = |input value - target
value|. The o�set score is therefore always positive, with a score of
0 indicating a completely accurate input. We report the mean o�set
score per device in Table 1, and visualise the distribution of these
scores in Figure 5. A Friedman test revealed a statistically signi�cant
di�erence in participant accuracy depending on which input device
was used, �2(5) = 45.75, p < 0.001. Using the Conover pairwise
post-hoc tests (with Benjamini–Hochberg procedure correction),
we �nd that participant o�set is signi�cantly higher (i.e., worse) for
the P������� ���� as compared to all other devices (all p < 0.001).

Further, we �nd that the B���� ������ has a signi�cantly lower
o�set as compared to all other devices except for the A�������
����� (p < 0.001), and that the A������� ����� has a signi�cantly
lower o�set as compared to the R��������� ������, C���������
����� ������, and R����� ���� (all p < 0.05). A number of trials
show extreme outliers (Figure 5), indicating that participants may
have erroneously inverted the input axis in their mind on a lim-
ited number of trials. Interestingly, these outliers, while limited in
occurrence, seem to have occurred solely for the ‘slider’ devices.

Next, we investigated whether o�set in participant accuracy
di�ers in speci�c input ranges. In Figure 6, we visualise the mean
o�set in participant accuracy between devices, as grouped in buck-
ets of 10 over the entire input range. The �gure highlights a number
of interesting di�erences between devices. The least accurate self-
report device, P������� ����, shows a large o�set in input range
above 40 – indicating that the large o�set for this device is primarily
due to inaccuracy when providing higher levels of pressure (mean
absolute o�set of 36.1). For the R��������� ������ (mean o�set
14.1), C��������� ����� ������ (mean o�set 13.9), and R�����
���� (mean o�set 12.8), we see a clear pattern that indicates par-
ticipant input is too high on the lower target values and too low
for the higher values. Input for the B���� ������ (mean o�set 10.2)
and A������� ����� (mean o�set 12.2) is most consistent over the
target range.

4.2 Workload & Preferences
We further evaluated the six input devices according to partici-
pants’ perceived workload and preferences. We used the NASA-TLX
questionnaire [25, 26] and collected user comments following each
device trial.

We visualise the self-reported workload of operating each of the
six devices in Figure 7. In line with the recorded accuracy levels,
we notice that physical demand, required e�ort, and frustration
are clearly higher for the P������� ���� as compared to the other
devices. Furthermore, we �nd that the perceived physical demand,
e�ort, and frustration is also high for the R��������� ������ and
A������� �����. Both these devices required the participant to
provide continuous pressure to the device while simultaneously
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Figure 6: Overview of di�erence between participant input value and target value across the input range (0–100), grouped in
bins of 10.

con�rming the input using a di�erent �nger, explaining their higher
reported load on these NASA-TLX dimensions.

At the end of the study, participants ranked the six devices in
order of preference. Devices were rated from 1 to 6, and identical
rankings were not allowed – forcing participants to consider their
preference between all devices. We summarise the ranking the de-
vices in Figure 8, highlighting the popularity of theB���� ������ and
C��������� ����� ������ as a �rst-choice option. Furthermore,
the ranking shows that the R����� ���� is frequently selected
as a second choice, and that the P������� ���� is predominantly
considered as the least favourite device among our sample. Rank-
ings for the R��������� ������ indicate a disagreement between
participants.

4.2.1 User Preferences and Comments. Following each device trial,
participants were encouraged to provide as much detail as possible
about what they felt could be improved with the device. A total of
17 of the 20 participants provided comments after the device trials,
while �ve participants provided additional comments at the end of
the study. Following a process of emergent thematic coding, carried
out collaboratively by two of the paper’s authors, we categorised
participant comments in the themes of accuracy and ergonomics.

Accuracy. Various comments focused on device accuracy, in-
cluding characteristics of the devices and strategies for achieving

a higher accuracy. Device characteristics most often focused on
the haptic feedback inherent to the device. P11 appreciated that
the A������� ����� provided a sense for the midpoint, stating,
“I liked the default position of 50 meaning that I had a clear idea of
where the top half and bottom half of the numbers would be.” The
midpoint was also mentioned in relation to the R��������� ������.
P10 claimed, “I had a model in my mind that when I suddenly felt
resistance, I was halfway.” Some participants were less favourable,
yet also mentioned the perception of the midpoint. P17 noted, “I
liked the resistance however it was still di�cult to be accurate with
this one without a middle point.” P17 also missed having a midpoint
with the R����� ����, “I feel like I was able to be more accurate
with this device, however I was missing a little feedback for the 50
(middle point).”

Various participants explained the strategies they adopted trying
to increase their accuracy in the task. The most common strategy
involved exploring the limits of the device by moving the sensor
between the minimum and maximum values in the range, then sub-
sequently selecting the target value. Another commonly recurring
strategy involved relying on the device preserving the previous
value and then adjusting to achieve the new target value. P06 stated
that the B���� ������, “...stayed in place, I estimated more relative
to my last position.” P17 expressed similar considerations about
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Figure 7: Overview of NASA-TLX scores for each of the six devices across the six dimensions of the NASA-TLX.
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Figure 8: Distribution of participants’ ranking of the six devices, a rank of 1 is best.

the B���� ������, “...I had to �nd 0 and 100 scale before each input,
however I believe that this move can be learned with time.” Likewise,
P02 commented regarding the C��������� ����� ������, “I devel-
oped a technique along the way for �guring out where my �nger was
placed on the scale.” P12 gave an indication that they struggled in
choosing a strategy when using the R��������� ������ stating, “...I
tried di�erent methods of going all the way down or just trying to
adjust based on the previous ‘judgement’, but I never felt secure in my
choice.”

Ergonomics. Several participants provided comments related
to the ergonomics of the devices. A few of them mentioned that
the C��������� ����� ������ felt comfortable to use, for example,
P08 appreciated the tactile guidance o�ered by the window on the
C��������� ����� ������, which made it “Easier to physically feel
where the numbers were because my �nger could feel the whole scope.”
Some of the devices received a mix of favourable as well as critical
comments. For example, P04 noted about the P������� ����, “This
device felt like I had the most control, as I was able to use my entire
hand to both hold and use the device.” Other participants, however,
claimed that the ergonomics of the P������� ���� device could be
improved, yet did not provide speci�c suggestions.

Most of the suggestions for ergonomic improvements focused on
the con�rmation button, with participants stressing the challenge
in simultaneously trying to match the target value and con�rm-
ing their input. Additional comments focused on re�nements to
the sensor range and placement. P19 suggested that the R�����
���� could have longer travel in the movement, stating “If you
made the range of motion slightly larger it would be easier to get more
accurate values.” P03 suggested that the A������� ����� would
have been, “[...] more ergonomic from left to right”.

5 DISCUSSION
Despite the wide use of self-report methods by HCI researchers [64],
the literature also recognises a number of challenges regarding the
accuracy of self-report data. Participants may, for example, aim
to give socially acceptable answers [14] or lose motivation to an-
swer accurately over the duration of a study [35, 58]. The increased
use of discreet tangible self-report devices introduces another con-
cern atypical of pen-and-paper or smartphone-based self-reports;
the possibility for a discrepancy between the intended input and
the recorded input. Our results highlight signi�cant di�erences be-
tween the assessed input techniques, with the P������� ���� device

resulting in the lowest accuracy and the B���� ������ outperform-
ing all devices except for the A������� �����. Furthermore, we
identify similar patterns in o�set across multiple devices – indi-
cating a common error among participants to overestimate the
required input on lower target values and underestimate the re-
quired input on higher target values. Lastly, we compared input
accuracy across a number of input ranges and show that, in line
with our expectations, participant input is more accurate on less
granular scales. Overall, our results present evidence for the fact
that, depending on the desired data granularity, input discrepancy
can be a serious threat to the reliability of self-report data as col-
lected through tangible input devices.

Before discussing our results and implications in more detail,
we wish to highlight that our design criteria – discreet input, one-
handed usage, and consistency between the appearance of devices
– have directly in�uenced both the design and operation of the
presented devices. We base our motivation of discreet input and
one-handed usage on work detailing previous experiences of study
participants [1, 51]. Our decision to maintain a consistent form
factor between devices follows from the motivation to reduce form
factor bias between input techniques. We note that, as a conse-
quence of this design criteria, the presented devices were optimised
for comparability rather than their respective input technique. As
such, the input devices could be further optimised to support a
higher level of usability for the speci�c input type. For example,
the requirement to con�rm input with the index �nger turned
out to be more ergonomic on the devices that did not return the
input value to zero upon release (i.e., B���� ������ and R�����
����) as participants were not required to maintain tension. As,
to the best of our knowledge, no prior study has evaluated the
accuracy of tangible self-report devices, we consider this a viable
approach to the validation of scienti�c instruments already used
in the wild (e.g., Keppi [1]), and similar to Hernandez comparison
of smartwatches, smartphones, and Google Glass [28]. In order
to support the development and assessment of future self-report
devices, we provide both the software and hardware blueprints as
supplementary material to this paper1.

5.1 Wearable & Tangible Input Devices
Researchers employing the Experience Sampling Method (ESM),
originally asking participants to complete responses on pen-and-
paper following an incoming beeper alert [35], have been quick

1Please see the supplementary materials.
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to adapt the method to make use of novel technologies as they
became available, including the PDA and the smartphone. Lately,
researchers have looked at the use of wearable and tangible input
devices as alternative input methods. Although smartphones are
frequently used throughout the day, receiving a questionnaire noti-
�cation prompt on a smartphone may be perceived as disruptive
and requires that the participant unlocks their phone and launches
a speci�c application. This takes additional time away from the par-
ticipant and may reduce overall response rates [28]. Furthermore,
participants may �nd it di�cult to enter data discreetly [1, 51].
Despite these advantages, the use of these alternative input devices
also raises new challenges. In a comparison of wearable input de-
vices, for example, Hernandez et al. highlighted that “the limited
Watch screen size may potentially in�uence the use of the full-range
of some kinds of response scales” [28].

Given the importance of accurately capturing the participants’ in-
tended self-report values, we studied input accuracy across a range
of di�erent input techniques. We stress that while our contribution
focuses strongly on the use of tangibles for collecting numeric par-
ticipant input, previous work has highlighted the importance of
considering the a�ective dimension of self-report devices [2, 18, 23].
For example, Duong et al. made use of plush toys to increase the
suitability of the self-report devices for hospitalised children. These
considerations are out of scope for this work.

5.1.1 Perception of Tactile Feedback. Material choices and physical
techniques have been explored to provide additional explicit feed-
back, e.g. �exible devices which provide feedback through the act
of deformation [9]. Participant experiences in their use of the six
self-report devices revealed wide di�erences among participants
in regards to tactile qualities of the physical form, movement, and
resistance. Previous research suggests that eyes-free interaction
provides implicit closed-loop control, yet additional haptic feedback
can enhance the sense of control and accuracy [5, 43]. In this study
we introduced straightforward material-based control resistance
feedback in the form of kinematic constraints (e.g., constrained
slider movement in a linear path of 30mm) and material based pas-
sive haptic feedback (e.g., increase in elastic resistance felt with
the R��������� ������), compression of the foam in the P�������
���� device, and the spring that returns the A������� ����� to the
centre position).

Through the comments of our participants, we identi�ed that
they developed a number of strategies to improve their accuracy
based on these material-based feedback mechanisms. The most
widely applied strategy consisted of moving the input mechanism
between the lowest and highest point to obtain a sense of scale,
and subsequently adjusting the input value while using the low-
est or highest point as a baseline (e.g., trying to ‘subtract’ 11 from
100). Similarly, participants commented positively on the additional
feedback point provided by the A������� ����� (midpoint). This
highlights the value of clear start- and end-points, something that
was not provided by the P������� ����. Surprisingly, participants
also described their use of material properties as a feedback mech-
anism in ways we did not originally envision. For example, the
elastic resistance provided by the R��������� ������was perceived
by a few of our participants as providing a midpoint indication.
In reality, however, the resistance was smooth, linear, and did not

expressly indicate a midpoint. A lack of su�cient feedback mecha-
nisms may, therefore, result in participants incorrectly assuming
that they identi�ed a reliable support mechanism – indicating the
presence of a conceptual discrepancy among users [7].

5.1.2 Tangible Self-Report in the Wild. The presented research con-
tributes to the use of tangible self-report devices. While we focused
on the assessment of participant performance in the lab, our work
led us to re�ect on a number of open questions for applying this
technology in situ. First, the portability of self-report devices is crit-
ical when participants have to carry the device on them throughout
their daily life. Previous work has therefore explored the use of
wearables [1, 28] or provided multiple situated self-report devices
placed strategically throughout the participant’s house [44]. Our
devices were designed with a limited degree of ‘pocketability’ in
mind – allowing the device to be stored inside a handbag or the
pocket of a sweater.

Second, collecting accidental input is a serious concern when
dealing with ‘always on’ tangible devices. While the ability to pro-
vide immediate input, without e.g. opening an application on a
smartphone, lowers the barrier for input, it also increases the pos-
sibility for accidental data recordings. Prior work has considered
the use of a mechanical slider to easily lock/unlock the possibility
of data collection [70].

Finally, any mobile technology will face challenges related to
battery life. Our devices were equipped with 3.7V batteries. These
batteries provided a limited battery life, were unable to report their
remaining battery value, and had to be recharged during the study.
Previous work by Vega et al. estimated that their battery would
su�ce for four weeks, su�cient to support the median study dura-
tion of two weeks in experience sampling studies [64]. However,
the physical dimensions of their battery case (57.75 cm3) would
increase the di�culty of �tting the battery within a tangible device.
The ability for participants to recharge devices using a standard
USB connector would, therefore, most likely be a requirement for
longitudinal deployments.

5.2 Implications for Tangible Self-Report
Research

Based on our gathered insights, we outline a number of implications
for future work on tangible self-report studies. We stress that our
studywas limited to a lab evaluation in order to systematically study
input accuracy across a wide range of input techniques. However,
a further assessment of our implications in situ are required.

• Haptic feedback to support kinesthetic sense. Based on
the participants’ comments, we believe that feedback mech-
anisms – such as the ‘middle point’ provided by the neutral
position of the A������� ����� – are useful to participants
in assessing the input range. Future work may therefore ex-
plore additional feedback mechanisms and modalities, e.g.
through vibrotactile feedback, force feedback, or non-speech
audio to augment the kinesthetic sense [43]. Such feedback
mechanisms have been considered in other contexts such
as in-car interactions, in which users do not always have a
direct line of sight to the input controls [42].
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• Precision / power grip trade-o�. Our results clearly iden-
tify the P������� ���� as being the least accurate of all
self-report devices. While prior work, e.g., Keppi [1], have
made use of pressure-based input at a lower resolution, our
results highlight that participants were unable to produce
reliable input at higher target values (i.e., above 40 – see Fig-
ure 6). The P������� ���� device required users to provide
input through a so-called ‘power grip,’ in which a person pro-
vides pressure between the palm of the hand and the �ngers.
Clarkson describes the power grip as being high force and
low precision [11], which explains participant inaccuracy
as the required pressure increases. While our results point
to the inaccuracy of the power grip, squeeze input based
on manipulation between the �ngers (e.g., thumb and index
�nger) is potentially able to provide a higher level of input
accuracy. It is worthwhile to note that some participant pop-
ulations may have less �ne motor control, e.g. stroke patients
may not be able to control precise movements, yet could still
provide some input through a power grip.

• Control resistance / con�rmation. While we originally
believed that adding resistance to the device (R���������
������ and P������� ����) would provide additional feed-
back to participants and act as a ‘spring return’ [46], our
results highlight that this did not support participants in
providing more accurate input. Participants’ comments high-
lighted that some found it di�cult to ensure that their input
remained stationary while simultaneously pressing a sepa-
rate con�rmation button with their index �nger. Another
option can be to employ input techniques that make use of
control resistance that do not require participants to ‘hold’
the position but remain in place while the user con�rms their
input (as used in the B���� ������ and R����� ����).

• Match device features to individual preferences. The
resistance and ‘return spring’ e�ect present in theA�������
�����, R��������� ������ and P������� ���� received mixed
responses from the participants. Some participants found
this passive haptic feedback helpful and enjoyable, while oth-
ers expressed dislike and frustration. Similarly, comments
varied in terms of support for the position of the con�rma-
tion buttons, even though in the pilot study participants with
a wide range of hand sizes supported the placement of the
�nal design. Therefore, we suggest that individual elements
of tangible self-report devices, such as the placement of a
con�rmation button, should be customisable to participants’
preferences. Ignoring user preferences or providing unde-
sirable features has been shown to lead to rejection by the
user [32]. While outside of the scope of our current study, we
hypothesise that a mismatch between participant preference
and the actual design of a tangible self-report device may
result in reduced accuracy in self-report data.

• Systematic input o�set. Finally, we note that our analysis
shows a similar pattern of o�set among a number of the
study’s devices; on lower target values, participants typi-
cally provide a higher input value, whereas on higher target
values they provide a lower input value (Figure 6). While
this o�set pattern requires further investigation across other
studies, a systematic o�set could be compensated for with

a straightforward adjustment to the linear assessment. O�-
set correction has previously proven useful in improving
pointing accuracy for projected targets in real and virtual en-
vironments [39], as well as correcting smartphone input [6].

5.2.1 Future work. Our �ndings also highlight opportunities for
future work. Recent research has explored digital control of explicit
haptic feedback to enhance accuracy and improve the experience of
interactions. Adding vibrotactile cues have been shown to increase
accuracy in handle position in a sports setting [54]. Work on �exible
smartphones explored the uses of a haptuator to provide additional
haptic and auditory feedback beyond the material properties of the
device to increase user control [59]. Such feedback elements can
be incorporated without requiring the user to hold on to the input
mechanism while con�rming the input. Virtual springs and detents
have been explored to enhance grasp tasks [22], and to support users
to more quickly navigate in CAD environments using a tangible
controller [27]. Incorporating such active haptic feedback signals
could potentially increase participant input accuracy while further
supporting the goal of discrete input.

5.3 Limitations
We identify a number of limitations in our work. First, we presented
a limited number and variety of devices to participants, whereas
an almost endless combination of input types could be considered.
We base our selection on the related work on tangible (self-report)
devices [1, 4, 43], our three design considerations (can be operated
without line of sight, with one-hand, and a consistent appearance
between devices), and availability of materials, in order to cover
an essential set of input types. Second, the devices used (see Fig-
ures 3 and 4) are less polished than some of the devices presented
in earlier work – which typically focused on a single device. As
the visual appearance is highly similar between devices, we do
not expect this to have had a notable impact on the accuracy of
results. Third, our work does not consider uncertainty-based input,
as discussed inter alia by Greis et al. [21]. While this type of input
is not very common, a number of application areas would bene�t
from participants being able to submit a self-report that allows for
uncertainty. Finally, given the lab-based nature of our study, we
are unable to comment on the impact of long-term deployments
on input discrepancy. As tangible self-report devices typically do
not provide any direct feedback as to the data that was entered, it
is impossible for participants to learn to adjust their input during a
longitudinal deployment. We, therefore, expect any discrepancies
between the intended and recorded input to maintain or aggra-
vate over the study duration. Future work should explore the input
accuracy of tangible self-report devices in the wild.

6 CONCLUSION
In this paper, we study the accuracy of participants in operating
tangible self-report devices across a range of input techniques.
Our work is motivated by the increasing use of tangible devices
in self-report studies, following the need for participants to enter
their self-report data more discreetly and without the distractions a
smartphonemay provide.We designed six devices to explore a range
of input techniques. The ability of participants to use these devices
to match a randomised number was measured through a lab study,
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in which participants were asked to input numbers while holding
the device outside of their line of sight. Our results reveal that
participant accuracy was highest for the B���� ������ and lowest
for the P������� ����. We furthermore �nd that participants input
values are too high on the lower end of the input spectrum, whereas
their input value is typically too low towards the higher end of the
input spectrum. Based on participant feedback and our quantitative
analysis, we identify implications for future tangible self-report
research concerning control resistance, haptic feedback, and input
technique. Our work highlights the importance of evaluating our
scienti�c instruments before deploying them in thewild. By publicly
releasing both the software and hardware blueprints of our devices,
we hope to encourage future research in this growing area.

REFERENCES
[1] Alexander T. Adams, Elizabeth L. Murnane, Phil Adams, Michael Elfenbein,

Pamara F. Chang, Shruti Sannon, Geri Gay, and Tanzeem Choudhury. 2018. Keppi:
A Tangible User Interface for Self-Reporting Pain. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). Association for
Computing Machinery, Article 502, 13 pages. https://doi.org/10.1145/3173574.
3174076

[2] Madeline Balaam, Geraldine Fitzpatrick, Judith Good, and Rosemary Luckin. 2010.
Exploring A�ective Technologies for the Classroom with the Subtle Stone. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’10). Association for Computing Machinery, 1623–1632. https://doi.org/10.
1145/1753326.1753568

[3] Allan Berrocal, Waldo Concepcion, Stefano De Dominicis, and Katarzyna Wac.
2020. Complementing Human Behavior Assessment By Leveraging Personal
Ubiquitous Devices and Social Links: Evaluation of the PeerMA Method. JMIR
mHealth and uHealth (2020), in press. https://doi.org/10.2196/15947

[4] Alberto Boem and Giovanni Maria Troiano. 2019. Non-Rigid HCI: A Review
of Deformable Interfaces and Input. In Proceedings of the 2019 on Designing
Interactive Systems Conference (DIS ’19). 885–906. https://doi.org/10.1145/3322276.
3322347

[5] Stephen Brewster, Joanna Lumsden, Marek Bell, Malcolm Hall, and Stuart Tasker.
2003. Multimodal ’eyes-Free’ Interaction Techniques for Wearable Devices. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’03). 473–480. https://doi.org/10.1145/642611.642694

[6] Daniel Buschek and Florian Alt. 2015. TouchML: A Machine Learning Toolkit
for Modelling Spatial Touch Targeting Behaviour. In Proceedings of the 20th
International Conference on Intelligent User Interfaces (Atlanta, Georgia, USA) (IUI
’15). 110–114. https://doi.org/10.1145/2678025.2701381

[7] John M. Carroll and Judith Reitman Olson. 1988. Mental Models in Human-
Computer Interaction. In Handbook of Human-Computer Interaction, Martin
Helander (Ed.). North-Holland, Amsterdam, 45–65. https://doi.org/10.1016/B978-
0-444-70536-5.50007-5

[8] Scott Carter and Jennifer Manko�. 2005. When Participants Do the Capturing:
The Role of Media in Diary Studies. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’05). 899–908. https://doi.org/10.1145/
1054972.1055098

[9] Victor Cheung, Alex Keith Eady, and Audrey Girouard. 2017. Exploring Eyes-Free
Interaction with Wrist-Worn Deformable Materials. In Proceedings of the Eleventh
International Conference on Tangible, Embedded, and Embodied Interaction (TEI
’17). 521–528. https://doi.org/10.1145/3024969.3025087

[10] Eun Kyoung Choe, Bongshin Lee, Matthew Kay, Wanda Pratt, and Julie A. Kientz.
2015. SleepTight: Low-Burden, Self-Monitoring Technology for Capturing and
Re�ecting on Sleep Behaviors. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). Association
for Computing Machinery, 121–132. https://doi.org/10.1145/2750858.2804266

[11] John Clarkson. 2008. Human Capability and Product Design. In Product Expe-
rience, Hendrik N.J. Schi�erstein and Paul Hekkert (Eds.). Elsevier, San Diego,
165–198. https://doi.org/10.1016/B978-008045089-6.50009-5

[12] Ashley Colley, Sven Mayer, and Niels Henze. 2019. Investigating the E�ect of
Orientation and Visual Style on Touchscreen Slider Performance. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19).
Association for Computing Machinery, 1–9. https://doi.org/10.1145/3290605.
3300419

[13] Ashley Colley, Lasse Virtanen, Timo Ojala, and Jonna Häkkilä. 2016. Guided
Touch Screen: Enhanced Eyes-Free Interaction. In Proceedings of the 5th ACM
International Symposium on Pervasive Displays (PerDis ’16). 80–86. https://doi.
org/10.1145/2914920.2915008

[14] Ross Corkrey and Lynne Parkinson. 2002. A comparison of four computer-
based telephone interviewing methods: Getting answers to sensitive questions.

Behavior Research Methods, Instruments, & Computers 34, 3 (01 Aug. 2002), 354–
363. https://doi.org/10.3758/BF03195463

[15] Christian Corsten, Simon Voelker, Andreas Link, and Jan Borchers. 2018. Use
the Force Picker, Luke: Space-E�cient Value Input on Force-Sensitive Mobile
Touchscreens. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3174235

[16] Mihaly Csikszentmihalyi and Reed Larson. 2014. Validity and Reliability of the
Experience-Sampling Method. In Flow and the Foundations of Positive Psychology:
The Collected Works of Mihaly Csikszentmihalyi, Mihaly Csikszentmihalyi (Ed.).
Springer Netherlands, Dordrecht, 35–54. https://doi.org/10.1007/978-94-017-
9088-8_3

[17] Alastair H Cummings. 2007. The evolution of game controllers and control
schemes and their e�ect on their games. In The 17th annual university of southamp-
ton multimedia systems conference, Vol. 21.

[18] Tu Dinh Duong, Ann Blandford, Yvonne Rogers, and Neil Sebire. 2019. Beyond
The Smartphone: The Assessment And Re�ection Of Wellbeing For Children. In
Adjunct Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (WISH - Workgroup on Interactive Systems in Health).

[19] ElfaDistrelec. 2020. RND 60000069 Low Density Conductive Foam, 305 x 305mm
RND Lab. https://www.elfadistrelec.dk/da/low-density-conductive-foam-305-
305mm-rnd-lab-rnd-600-00069/p/30130230

[20] T. Feix, J. Romero, H. Schmiedmayer, A. M. Dollar, and D. Kragic. 2016. The
GRASP Taxonomy of Human Grasp Types. IEEE Transactions on Human-Machine
Systems 46, 1 (2016), 66–77.

[21] Miriam Greis, Hyunyoung Kim, Andreas Korge, Céline Coutrix, and Albrecht
Schmidt. 2019. Extending Input Space of Tangible Dials and Sliders for Uncertain
Input. In Proceedings of the Thirteenth International Conference on Tangible, Em-
bedded, and Embodied Interaction (TEI ’19). Association for Computing Machinery,
189–196. https://doi.org/10.1145/3294109.3300985

[22] Sidhant Gupta, Tim Campbell, Je�rey R. Hightower, and Shwetak N. Patel. 2010.
SqueezeBlock: Using Virtual Springs in Mobile Devices for Eyes-Free Interaction.
In Proceedings of the 23nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’10). 101–104. https://doi.org/10.1145/1866029.1866046

[23] Frode Guribye, Tor Gjøsæter, and Christian Bjartli. 2016. Designing for Tangible
A�ective Interaction. In Proceedings of the 9th Nordic Conference on Human-
Computer Interaction (NordiCHI ’16). Article 30, 10 pages. https://doi.org/10.
1145/2971485.2971547

[24] Chris Harrison and Scott Hudson. 2012. Using Shear as a Supplemental Two-
Dimensional Input Channel for Rich Touchscreen Interaction. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’12). Association
for Computing Machinery, 3149–3152. https://doi.org/10.1145/2207676.2208730

[25] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006),
904–908. https://doi.org/10.1177/154193120605000909

[26] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX
(Task Load Index): Results of Empirical and Theoretical Research. In Human
Mental Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances
in Psychology, Vol. 52. North-Holland, 139–183. https://doi.org/10.1016/S0166-
4115(08)62386-9

[27] Nikolaj Haulrik, Rasmus M. Petersen, and Timothy Merritt. 2017. CADLens:
Haptic Feedback for Navigating in 3D Environments. In Proceedings of the 2017
ACM Conference Companion Publication on Designing Interactive Systems (DIS ’17
Companion). 127–131. https://doi.org/10.1145/3064857.3079132

[28] Javier Hernandez, Daniel McDu�, Christian Infante, Pattie Maes, Karen Quigley,
and Rosalind Picard. 2016. Wearable ESM: Di�erences in the Experience
Sampling Method across Wearable Devices. In Proceedings of the 18th Inter-
national Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI ’16). Association for Computing Machinery, 195–205. https:
//doi.org/10.1145/2935334.2935340

[29] Stephen Intille, Caitlin Haynes, Dharam Maniar, Aditya Ponnada, and Justin
Manjourides. 2016. µEMA: Microinteraction-Based Ecological Momentary As-
sessment (EMA) Using a Smartwatch. In Proceedings of the 2016 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp ’16). 1124–1128.
https://doi.org/10.1145/2971648.2971717

[30] Yvonne Jansen, Pierre Dragicevic, and Jean-Daniel Fekete. 2012. Tangible Remote
Controllers for Wall-Size Displays. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’12). Association for Computing
Machinery, 2865–2874. https://doi.org/10.1145/2207676.2208691

[31] Mark P. Jensen, Paul Karoly, and Sanford Braver. 1986. The measurement of
clinical pain intensity: a comparison of six methods. Pain 27, 1 (1986), 117–126.
https://doi.org/10.1016/0304-3959(86)90228-9

[32] Myounghoon Jeon, Thomas M. Gable, Benjamin K. Davison, Michael A. Nees,
Je� Wilson, and Bruce N. Walker. 2015. Menu Navigation With In-Vehicle
Technologies: Auditory Menu Cues Improve Dual Task Performance, Preference,
and Workload. International Journal of Human-Computer Interaction 31, 1 (2015),
1–16. https://doi.org/10.1080/10447318.2014.925774

https://doi.org/10.1145/3173574.3174076
https://doi.org/10.1145/3173574.3174076
https://doi.org/10.1145/1753326.1753568
https://doi.org/10.1145/1753326.1753568
https://doi.org/10.2196/15947
https://doi.org/10.1145/3322276.3322347
https://doi.org/10.1145/3322276.3322347
https://doi.org/10.1145/642611.642694
https://doi.org/10.1145/2678025.2701381
https://doi.org/10.1016/B978-0-444-70536-5.50007-5
https://doi.org/10.1016/B978-0-444-70536-5.50007-5
https://doi.org/10.1145/1054972.1055098
https://doi.org/10.1145/1054972.1055098
https://doi.org/10.1145/3024969.3025087
https://doi.org/10.1145/2750858.2804266
https://doi.org/10.1016/B978-008045089-6.50009-5
https://doi.org/10.1145/3290605.3300419
https://doi.org/10.1145/3290605.3300419
https://doi.org/10.1145/2914920.2915008
https://doi.org/10.1145/2914920.2915008
https://doi.org/10.3758/BF03195463
https://doi.org/10.1145/3173574.3174235
https://doi.org/10.1007/978-94-017-9088-8_3
https://doi.org/10.1007/978-94-017-9088-8_3
https://www.elfadistrelec.dk/da/low-density-conductive-foam-305-305mm-rnd-lab-rnd-600-00069/p/30130230
https://www.elfadistrelec.dk/da/low-density-conductive-foam-305-305mm-rnd-lab-rnd-600-00069/p/30130230
https://doi.org/10.1145/3294109.3300985
https://doi.org/10.1145/1866029.1866046
https://doi.org/10.1145/2971485.2971547
https://doi.org/10.1145/2971485.2971547
https://doi.org/10.1145/2207676.2208730
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1145/3064857.3079132
https://doi.org/10.1145/2935334.2935340
https://doi.org/10.1145/2935334.2935340
https://doi.org/10.1145/2971648.2971717
https://doi.org/10.1145/2207676.2208691
https://doi.org/10.1016/0304-3959(86)90228-9
https://doi.org/10.1080/10447318.2014.925774


Tangible Self-Report Devices: Accuracy and Resolution of Participant Input TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea

[33] Amy K Karlson, Benjamin B Bederson, and J Contreras-Vidal. 2006. Under-
standing single-handed mobile device interaction. Handbook of research on user
interface design and evaluation for mobile technology 1 (2006), 86–101.

[34] Hyunyoung Kim, Céline Coutrix, and Anne Roudaut. 2018. KnobSlider: Design
of a Shape-Changing UI for Parameter Control. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems (CHI ’18). Association for
Computing Machinery, 1–13. https://doi.org/10.1145/3173574.3173913

[35] Reed Larson andMihaly Csikszentmihalyi. 2014. The Experience Sampling Method.
Springer Netherlands, Dordrecht, 21–34. https://doi.org/10.1007/978-94-017-
9088-8_2

[36] G. Laurans, P. M. A. Desmet, and P. Hekkert. 2009. The emotion slider: A
self-report device for the continuous measurement of emotion. In 2009 3rd In-
ternational Conference on A�ective Computing and Intelligent Interaction and
Workshops. 1–6.

[37] Huy Viet Le, Sven Mayer, Patrick Bader, and Niels Henze. 2018. Fingers’ Range
and Comfortable Area for One-Handed Smartphone Interaction Beyond the
Touchscreen. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (CHI ’18). Association for Computing Machinery, 1–12. https:
//doi.org/10.1145/3173574.3173605

[38] Justin Matejka, Michael Glueck, Tovi Grossman, and George Fitzmaurice. 2016.
The E�ect of Visual Appearance on the Performance of Continuous Sliders and
Visual Analogue Scales. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). Association for Computing Machinery,
5421–5432. https://doi.org/10.1145/2858036.2858063

[39] Sven Mayer, Valentin Schwind, Robin Schweigert, and Niels Henze. 2018. The
E�ect of O�set Correction and Cursor on Mid-Air Pointing in Real and Virtual
Environments. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems (Montreal QC, Canada) (CHI ’18). 1–13. https://doi.org/10.
1145/3173574.3174227

[40] Chris McManus. 2002. Right hand, left hand: The origins of asymmetry in brains,
bodies, atoms and cultures. Harvard University Press.

[41] Geo�reyMiller. 2012. The Smartphone PsychologyManifesto. Perspectives on Psy-
chological Science 7, 3 (2012), 221–237. https://doi.org/10.1177/1745691612441215

[42] Alexander Ng and Stephen Brewster. 2017. An Evaluation of Touch and Pressure-
Based Scrolling and Haptic Feedback for In-Car Touchscreens. In Proceedings
of the 9th International Conference on Automotive User Interfaces and Interactive
Vehicular Applications (Oldenburg, Germany) (AutomotiveUI ’17). 11–20. https:
//doi.org/10.1145/3122986.3122997

[43] Ian Oakley and Jun-Seok Park. 2007. Designing Eyes-Free Interaction. In Proceed-
ings of the 2nd International Conference on Haptic and Audio Interaction Design
(HAID’07). Springer-Verlag, Berlin, Heidelberg, 121–132.

[44] Gaurav Paruthi, Shriti Raj, Seungjoo Baek, Chuyao Wang, Chuan-che Huang,
Yung-Ju Chang, and Mark W. Newman. 2018. Heed: Exploring the Design of
Situated Self-Reporting Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 2, 3, Article 132 (Sept. 2018), 21 pages. https://doi.org/10.1145/3264942

[45] Jerome Pasquero and Vincent Hayward. 2011. Tactile Feedback Can Assist Vision
during Mobile Interactions. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11). Association for Computing Machinery,
3277–3280. https://doi.org/10.1145/1978942.1979427

[46] Inc Precision Sales. [n.d.]. J3R "Rocker" Potentiometer. http://www.precisionsales.
com/joystick/J3r-rocker-pot.htm

[47] Blaine A. Price, Ryan Kelly, Vikram Mehta, Ciaran McCormick, Hanad Ahmed,
and Oliver Pearce. 2018. Feel My Pain: Design and Evaluation of Painpad, a
Tangible Device for Supporting Inpatient Self-Logging of Pain. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18).
Association for Computing Machinery, 1–13. https://doi.org/10.1145/3173574.
3173743

[48] Mash�qui Rabbi, Katherine Li, H. Yanna Yan, Kelly Hall, Predrag Klasnja, and
Susan Murphy. 2019. ReVibe: A Context-Assisted Evening Recall Approach to
Improve Self-Report Adherence. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 3, 4, Article 149 (Dec. 2019), 27 pages. https://doi.org/10.1145/3369806

[49] Mika Raento, Antti Oulasvirta, and Nathan Eagle. 2009. Smartphones: An Emerg-
ing Tool for Social Scientists. Sociological Methods & Research 37, 3 (2009), 426–454.
https://doi.org/10.1177/0049124108330005

[50] Adrian Ramcharitar and Robert J. Teather. 2017. A Fitts’ Law Evaluation of Video
Game Controllers: Thumbstick, Touchpad and Gyrosensor. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems
(CHI EA ’17). 2860–2866. https://doi.org/10.1145/3027063.3053213

[51] John Rooksby, Alistair Morrison, and Dave Murray-Rust. 2019. Student Perspec-
tives on Digital Phenotyping: The Acceptability of Using Smartphone Data to
Assess Mental Health. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems (CHI ’19). 1–14. https://doi.org/10.1145/3290605.3300655

[52] Artur Saudabayev, Zhanibek Rysbek, Raykhan Khassenova, and Huseyin Atakan
Varol. 2018. Human grasping database for activities of daily living with depth,
color and kinematic data streams. Scienti�c Data 5, 1 (May 2018), 180101. https:
//doi.org/10.1038/sdata.2018.101

[53] Juergen Sauer and Andreas Sonderegger. 2009. The in�uence of prototype
�delity and aesthetics of design in usability tests: E�ects on user behaviour,

subjective evaluation and emotion. Applied Ergonomics 40, 4 (July 2009), 670–677.
https://doi.org/10.1016/j.apergo.2008.06.006

[54] André Schmidt, Mads Kleemann, Timothy Merritt, and Ted Selker. 2015. Tactile
Communication in Extreme Contexts: Exploring the Design Space Through
Kiteboarding. In Human-Computer Interaction ‚Äì INTERACT 2015 (Lecture Notes
in Computer Science), Julio Abascal, Simone Barbosa, Mirko Fetter, Tom Gross,
Philippe Palanque, and Marco Winckler (Eds.). Springer International Publishing,
Cham, 37–54. https://doi.org/10.1007/978-3-319-22723-8_4

[55] SparkFun. [n.d.]. Touch Potentiometer - PRT-13144. https://www.sparkfun.com/
products/13144

[56] Nancy L. Stephenson and JoAnne Herman. 2000. Pain measurement: A com-
parison using horizontal and vertical visual analogue scales. Applied Nursing
Research 13, 3 (2000), 157–158. https://doi.org/10.1053/apnr.2000.7658

[57] Craig Stewart, Michael Rohs, Sven Kratz, and Georg Essl. 2010. Characteristics of
Pressure-Based Input for Mobile Devices. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’10). Association for Computing
Machinery, 801–810. https://doi.org/10.1145/1753326.1753444

[58] Arthur A. Stone, Ronald C. Kessler, and Jennifer A. Haythomthwatte. 1991. Mea-
suring Daily Events and Experiences: Decisions for the Researcher. Journal of Per-
sonality 59, 3 (1991), 575–607. https://doi.org/10.1111/j.1467-6494.1991.tb00260.x

[59] Paul Strohmeier, Jesse Burstyn, Juan Pablo Carrascal, Vincent Levesque, and Roel
Vertegaal. 2016. ReFlex: A Flexible Smartphone with Active Haptic Feedback
for Bend Input. In Proceedings of the TEI ’16: Tenth International Conference
on Tangible, Embedded, and Embodied Interaction (TEI ’16). 185–192. https:
//doi.org/10.1145/2839462.2839494

[60] Hong Z Tan, Mandayam A Srinivasan, Brian Eberman, and Belinda Cheng. 1994.
Human factors for the design of force-re�ecting haptic interfaces. Dynamic
Systems and Control 55, 1 (1994), 353–359.

[61] C. Barr Taylor, Leslie Fried, and Justin Kenardy. 1990. The use of a real-time
computer diary for data acquisition and processing. Behaviour Research and
Therapy 28, 1 (1990), 93–97. https://doi.org/10.1016/0005-7967(90)90061-M

[62] Peter Totterdell and Simon Folkard. 1992. In situ repeated measures of a�ect
and cognitive performance facilitated by use of a hand-held computer. Behavior
Research Methods, Instruments, & Computers 24, 4 (01 Dec. 1992), 545–553. https:
//doi.org/10.3758/BF03203603

[63] Khai N. Truong, Thariq Shihipar, and Daniel J. Wigdor. 2014. Slide to X: Unlocking
the Potential of Smartphone Unlocking. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’14). Association for Computing
Machinery, 3635–3644. https://doi.org/10.1145/2556288.2557044

[64] Niels van Berkel, Denzil Ferreira, and Vassilis Kostakos. 2017. The Experience
Sampling Method on Mobile Devices. Comput. Surveys 50, 6 (2017), 93:1–93:40.
https://doi.org/10.1145/3123988

[65] Niels van Berkel, Jorge Goncalves, Simo Hosio, and Vassilis Kostakos. 2017.
Gami�cation of Mobile Experience Sampling Improves Data Quality and Quantity.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 3, Article 107 (Sept. 2017),
21 pages. https://doi.org/10.1145/3130972

[66] Niels van Berkel, Jorge Goncalves, Katarzyna Wac, Simo Hosio, and Anna L. Cox.
2020. HumanAccuracy inMobile Data Collection. International Journal of Human-
Computer Studies 137 (2020), 1–4. https://doi.org/10.1016/j.ijhcs.2020.102396

[67] Karen Vanderloock, Vero Vanden Abeele, Johan A.K. Suykens, and Luc Geurts.
2013. The Skweezee System: Enabling the Design and the Programming of
Squeeze Interactions. In Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology (UIST ’13). 521–530. https://doi.org/10.1145/
2501988.2502033

[68] Julio Vega, Samuel Couth, Ellen Poliako�, Sonja Kotz, Matthew Sullivan, Caroline
Jay, Markel Vigo, and Simon Harper. 2018. Back to Analogue: Self-Reporting for
Parkinson’s Disease. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems (CHI ’18). Association for Computing Machinery, Article
74, 13 pages. https://doi.org/10.1145/3173574.3173648

[69] Aku Visuri, Niels van Berkel, Chu Luo, Jorge Goncalves, Denzil Ferreira, and
Vassilis Kostakos. 2017. Challenges of Quanti�ed-Self: Encouraging Self-Reported
Data Logging during Recurrent Smartphone Usage. In Proceedings of the 31st
British Computer Society Human Computer Interaction Conference (HCI ’17). BCS
Learning & Development Ltd., Article 81, 7 pages. https://doi.org/10.14236/ewic/
HCI2017.81

[70] Martin Weigel and Jürgen Steimle. 2017. DeformWear: Deformation Input on
Tiny Wearable Devices. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1,
2, Article 28 (June 2017), 23 pages. https://doi.org/10.1145/3090093

[71] Jacob O. Wobbrock, Brad A. Myers, and Htet Htet Aung. 2008. The performance
of hand postures in front- and back-of-device interaction for mobile computing.
International Journal of Human-Computer Studies 66, 12 (2008), 857–875. https:
//doi.org/10.1016/j.ijhcs.2008.03.004 Mobile human-computer interaction.

[72] Te-Yen Wu, Zheer Xu, Xing-Dong Yang, Steve Hodges, and Teddy Seyed. 2021.
Project Tasca: Enabling Touch and Contextual Interactions with a Pocket-Based
Textile Sensor. In Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
Article 4, 13 pages. https://doi.org/10.1145/3411764.3445712

https://doi.org/10.1145/3173574.3173913
https://doi.org/10.1007/978-94-017-9088-8_2
https://doi.org/10.1007/978-94-017-9088-8_2
https://doi.org/10.1145/3173574.3173605
https://doi.org/10.1145/3173574.3173605
https://doi.org/10.1145/2858036.2858063
https://doi.org/10.1145/3173574.3174227
https://doi.org/10.1145/3173574.3174227
https://doi.org/10.1177/1745691612441215
https://doi.org/10.1145/3122986.3122997
https://doi.org/10.1145/3122986.3122997
https://doi.org/10.1145/3264942
https://doi.org/10.1145/1978942.1979427
http://www.precisionsales.com/joystick/J3r-rocker-pot.htm
http://www.precisionsales.com/joystick/J3r-rocker-pot.htm
https://doi.org/10.1145/3173574.3173743
https://doi.org/10.1145/3173574.3173743
https://doi.org/10.1145/3369806
https://doi.org/10.1177/0049124108330005
https://doi.org/10.1145/3027063.3053213
https://doi.org/10.1145/3290605.3300655
https://doi.org/10.1038/sdata.2018.101
https://doi.org/10.1038/sdata.2018.101
https://doi.org/10.1016/j.apergo.2008.06.006
https://doi.org/10.1007/978-3-319-22723-8_4
https://www.sparkfun.com/products/13144
https://www.sparkfun.com/products/13144
https://doi.org/10.1053/apnr.2000.7658
https://doi.org/10.1145/1753326.1753444
https://doi.org/10.1111/j.1467-6494.1991.tb00260.x
https://doi.org/10.1145/2839462.2839494
https://doi.org/10.1145/2839462.2839494
https://doi.org/10.1016/0005-7967(90)90061-M
https://doi.org/10.3758/BF03203603
https://doi.org/10.3758/BF03203603
https://doi.org/10.1145/2556288.2557044
https://doi.org/10.1145/3123988
https://doi.org/10.1145/3130972
https://doi.org/10.1016/j.ijhcs.2020.102396
https://doi.org/10.1145/2501988.2502033
https://doi.org/10.1145/2501988.2502033
https://doi.org/10.1145/3173574.3173648
https://doi.org/10.14236/ewic/HCI2017.81
https://doi.org/10.14236/ewic/HCI2017.81
https://doi.org/10.1145/3090093
https://doi.org/10.1016/j.ijhcs.2008.03.004
https://doi.org/10.1016/j.ijhcs.2008.03.004
https://doi.org/10.1145/3411764.3445712


TEI ’22, February 13–16, 2022, Daejeon, Republic of Korea van Berkel et al.

[73] Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong,
Sicheng Yin, Jialun Zhai, and Xing-Dong Yang. 2020. BiTipText: Bimanual Eyes-
Free Text Entry on a Fingertip Keyboard. In Proceedings of the 2020 CHI Conference
on Human Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376306

[74] Xinghui Yan, Katy Madier, Sun Young Park, and Mark Newman. 2019. Towards
Low-Burden In-Situ Self-Reporting: A Design Space Exploration. In Companion
Publication of the 2019 on Designing Interactive Systems Conference 2019 Compan-
ion (DIS ’19 Companion). 337–346. https://doi.org/10.1145/3301019.3323905

[75] Xinghui Yan, Shriti Raj, Bingjian Huang, Sun Young Park, and Mark W. Newman.
2020. Toward Lightweight In-Situ Self-Reporting: An Exploratory Study of

Alternative Smartwatch Interface Designs in Context. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 4, 4, Article 158 (2020), 22 pages. https://doi.org/10.
1145/3432212

[76] Eunhye Youn, Sangyoon Lee, Sunbum Kim, Youngbo Aram Shim, Liwei Chan,
and Geehyuk Lee. 2021. WristDial: An Eyes-Free Integer-Value Input Method
by Quantizing the Wrist Rotation. International Journal of Human–Computer
Interaction (2021), 1–18. https://doi.org/10.1080/10447318.2021.1898848

[77] Cheng Zhang, Junrui Yang, Caleb Southern, Thad E. Starner, and Gregory D.
Abowd. 2016. WatchOut: Extending Interactions on a Smartwatch with Inertial
Sensing. In Proceedings of the 2016 ACM International Symposium on Wearable
Computers (ISWC ’16). 136–143. https://doi.org/10.1145/2971763.2971775

https://doi.org/10.1145/3313831.3376306
https://doi.org/10.1145/3301019.3323905
https://doi.org/10.1145/3432212
https://doi.org/10.1145/3432212
https://doi.org/10.1080/10447318.2021.1898848
https://doi.org/10.1145/2971763.2971775

	Abstract
	1 Introduction
	2 Related Work
	2.1 Alternative Techniques for Self-Report Data Entry
	2.2 Data Quality and Reliability

	3 Method
	3.1 Design Considerations
	3.2 Hardware & Software
	3.3 Procedure

	4 Results
	4.1 Input Accuracy
	4.2 Workload & Preferences

	5 Discussion
	5.1 Wearable & Tangible Input Devices
	5.2 Implications for Tangible Self-Report Research
	5.3 Limitations

	6 Conclusion
	References

